AOC MINI CONFERENCE

THREAT WARNING

21 July 2010

TOPICS

SCOPE

 THE 30 WANTS OF RADAR WARNING SYSTEMS

WHAT ABOUT ESM?

SOME REAL DATA

... IMMEDIATE, 100% ALERT

SA2 GUIDELINE SAM

SA 2 GUIDELINE SAM

SA 2 FAN SONG RADAR

SA 3 GOA SAM

SA 3 GOA SAM

SA 3 LOW BLOW RADAR

SA 6 GAINFULL SAM

SA 6 STRAIGHT FLUSH RADAR

ZSU-23-4 AAA

SA 8 GECKO SAM

SA 8 GECKO SAM

...SPECIFIC RESPONSE

... OMNI DIRECTIONAL COVERAGE

... THREAT DIRECTION INDICATION

RWR block diagram

SIMPLIFIED RWR BLOCK DIAGRAM

sysdel

Canberra : Cenotaph RWR/ELINT receiver 1976

Cenotaph: NIDR Engineers

Compact Radar Warning System (Grinel)

CRWS Azimuth Indicator

TYPICAL COCKPIT DISPLAY (mimic of Sea Raven CDU)

CRWS Control Panel

ROOIVALK MULTI SENSOR WARNING SYSTEM (AVITRONICS)

GRIPPEN WARNING SYSTEM (SAAB)

Want 5

WANT # 5

... CHEAP

... EASY TO RETRO FIT

- >> Compact
- >> Light weight
- >> Low power consumption
- >> Flexible installation

... SURVIVE EXTREME ENVIRONMENT

... THREAT IDENTIFICATION

- >> Type
- >> Status (mode, function)
- >> Severity of threat
- >> Range

... EASY TO READ MMI

- >> Simple
- >> Graphical
- >> Symbolic

... THREAT LETHAL RANGE WARNING

INTERCEPT POWER vs RANGE

Power (dBm)

Range (km)

Radar ERP = 90 dBm

LETHAL RANGE ERROR BUDGET (dBs)

	+ve error	-ve error
Emitter Power intelligence	+3	-3
Antenna gain intelligence	+3	-3
Emitter beam offset	+0	-3
RWR antenna offset	+0	-5
RWR antenna gain variation		
(freq, polarisation, direction)	+3	-6
RWR Rx gain variation	+3	-3
Measurement error	+2	-2
Propagation error		
(multipath lobing etc)	+6	-30
SUBTOTALS	+20 dB	-55 dB
LETS ASSUME ERROR ONLY	+5 dB to -15 dB	

LETHAL RANGE WARNING ERROR

Radar ERP = 90 dBm

... COPE WITH EVER CHANGING/ESCALATING THREAT SCENARIO

... EXTRA CAPABILITIES

- >> Self protect resource management
- >> ELINT capture

... ADAPTIVITY (RE-PROGRAMMABILITY)

... INCREASED FREQUENCY COVERAGE

... ALL POLARISATIONS RESPONSE

... GREATER SENSITIVITY

... GREATER DYNAMIC RANGE

... DEAL WITH DENSE ENVIRONMENTS

Probability of Pulse Overlap

Assume: 1 KHz PRF, 1% duty cycle:

```
2 radars >> 1,9 %
```

... RESOLVE AMBIGUITIES

... INTELLIGENT THREAT LIBRARY

... COPE WITH DIVERSE SIGNAL TYPES

... COPE WITH COMPLEX SIGNAL SIGNATURES

... BETTER SIGNAL DE-INTERLEAVING AND CHARACTERISATION

... MEASURE MORE SIGNAL PARAMETERS

... MEASURE FREQUENCY

... IMMEDIATE (PER PULSE) FREQUENCY MEASUREMENT

JOURNALIS IFM ESM SYSTEM REBUILD (SYSDEL)

ESM TECHNOLOGY DEMONSTRATOR (SYSDEL/EM LAB)

... TO FINGERPRINT EMITTERS

(Intra Pulse AM, FM, PM)

... PRECISION DF

... EMITTER GEO-LOCATION

... UNCONSTRAINED EMITTER GEO-LOCATION

HOLD ON!

THE ABOVE CAPABILITY EXISTS:

IT'S CALLED ESM

ESM (ELECTRONIC SUPPORT MEASURES)

ESM System Purpose:

Real time surveillance of <u>all</u> emitters in the environment for the purposes of electronic battlefield management.

RWR System Purpose:

Warning of platform illumination by terminal threat radar.

Typical ESM System provides:

- Wideband (1 to 18 GHz) frequency coverage
- 360 degree azimuth coverage
- Per pulse frequency measurement (IFM)
- Per pulse DF (AmpDF or Interferometer DF)
- Intelligent processing
- Flexible, Graphics User Interface.

May also provide:

- geo-location and map display

WHY NOT USE ESM AS RWR?

- Cost
- No space in cockpit (or pilot's head)
- No space for Receiver/Processor
- Installation of Interferometer antenna
- MUST BE ADAPTED TO PROVIDE ONLY THREAT WARNING

SOME REAL DATA CAPTURED BY THE SEA RAVEN ESM SYSTEM OF THE LYNX HELICOPTER

SEA RAVEN ESM (+ELINT) on LYNX MARITIME HELICOPTER

SEA RAVEN ESM (+ELINT)

SEA RAVEN IntDF and AmpDF Antenna Installation

SEA RAVEN: Receiver/Processor Unit

SEA RAVEN: ESM Control and Display Units

INT DF LOBS

Geo-located Emitters

Selected Emitter LOBs

Selected Emitter LOBs

WHAT WOULD CLASSICAL RWR HAVE MEASURED?

Zero **ZERO** Why WHY? sysdel

BECAUSE:

IT MUST ONLY RESPOND TO TERMINAL THREATS

EFFECTIVE RADAR WARNING REQUIRES:

- >> The best practical receiver & processor technology.
- >> Fast and effective sorting/analysis algorithms
- >> In depth threat intelligence.
- >> An experienced User + pre- and post-mission briefing.

Ultra Short Baseline Geo-location

Ultra Short Baseline Geo-Location

